Trials and Tribulations of Image Registration in Brachytherapy

Joel Poder

St George Hospital Cancer Care Centre, Kogarah, NSW, Australia

Objectives

- Understand types of brachytherapy image registration use cases
- Recognize unique challenges of image registration for brachytherapy
- Appreciate the advantages/disadvantages of DIR in brachytherapy
- Review current status in the literature
- Discuss future directions and needs that must be met for clinical implementation

- 1. Contour propagation
 - MRI CT for cervix brachytherapy
 - MRI CT for HDR prostate brachytherapy
 - TRUS CT for post-implant dosimetry in LDR prostate
- 2. Dose accumulation in same course
 - Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT
- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

- 1. Contour propagation
 - MRI CT for cervix brachytherapy
 - TRUS- mpMRI for HDR prostate brachytherapy
 - TRUS CT for post-implant dosimetry in LDR prostate
- 2. Dose accumulation in same course
 - Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT
- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

- 1. Contour propagation
 - MRI CT for cervix brachytherapy
 - TRUS- mpMRI for HDR prostate brachytherapy
 - TRUS CT for post-implant dosimetry in LDR prostate
- 2. Dose accumulation in same course
 - Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT
- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

1. Contour propagation

- MRI CT for cervix brachytherapy
- TRUS- mpMRI for HDR prostate brachythe
- TRUS CT for post-implant dosimetry in L
- Dose accumulation in same course
 Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT

Brachytherapy

- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

1. Contour propagation

- MRI CT for cervix brachytherapy
- TRUS- mpMRI for HDR prostate brachytherapy
- TRUS CT for post-implant dosimetry in LDR prostate
- 2. Dose accumulation in same course
 - Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT
- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

1. Contour propagation

0

- MRI CT for cervix brachytherapy
- TRUS- mpMRI for HDR prostate brachytherapy
- TRUS CT for post-implant dosimetry in LDR prostate
- 2. Dose accumulation in same course
 - Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT
- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

1. Contour propagation

0

- MRI CT for cervix brachytherapy
- TRUS- mpMRI for HDR prostate brachytherapy
- TRUS CT for post-implant dosimetry in LDR prostate
- 2. Dose accumulation in same course
 - Cervix brachytherapy + EBRT
 - Prostate brachytherapy + EBRT
- 3. Dose accumulation to account for previous dose
 - Brachytherapy + previous EBRT course
 - Brachytherapy + previous brachytherapy

- 1. Most use cases involve multi-modality images, e.g. CT-MRI, TRUS-MRI, etc.
- 2. Presence of brachytherapy applicators in different images results in significant deformation of anatomy
- 3. Steep dose gradients associated with brachytherapy place strict demands on accuracy of image registration at voxel level
- 4. Time constraints in theatre require efficient solutions and QA methods

Joel.Poder@health.nsw.gov.au

DIR not reliable?

- 1. Most use cases involve multi-modality images, e.g. CT-MRI, TRUS-MRI, etc.
- 2. Presence of brachytherapy applicators in different images results in significant deformation of anatomy
- 3. Steep dose gradients associated with brachytherapy place strict demands on accuracy of image registration at voxel level
- 4. Time constraints in theatre require efficient solutions and QA methods

DIR not reliable?

Necessitates DIR

- 1. Most use cases involve multi-modality images, e.g. CT-MRI, TRUS-MRI, etc.
- 2. Presence of brachytherapy applicators in different images results in significant deformation of anatomy
- 3. Steep dose gradients associated with brachytherapy place strict demands on accuracy of image registration at voxel level
- 4. Time constraints in theatre require efficient solutions and QA methods

Joel.Poder@health.nsw.gov.au

DIR not reliable?

Necessitates DIR

Necessitates DIR

- 1. Most use cases involve multi-modality images, e.g. CT-MRI, TRUS-MRI, etc.
- 2. Presence of brachytherapy applicators in different images results in significant deformation of anatomy
- 3. Steep dose gradients associated with brachytherapy place strict demands on accuracy of image registration at voxel level
- 4. Time constraints in theatre require efficient solutions and QA methods

Joel.Poder@health.nsw.gov.au

Necessitates DIR

DIR not reliable?

Necessitates DIR

No DIR in BT TPS

Use Case – DIR for cervical HDR + EBRT dose accumulation

FULL TEXT ARTICLE

Deformable image registration for cervical cancer brachytherapy dose accumulation: Organ at risk dose– volume histogram parameter reproducibility and anatomic position stability a 🔁

E. Flower, V. Do, J. Sykes, C. Dempsey, L. Holloway, K. Summerhayes and D.I. Thwaites Brachytherapy, 2017-03-01, Volume 16, Issue 2, Pages 387-392, Copyright © 2017

Brachytherapy Volume 16, Issue 2

Abstract

- 39 patients, BT CT -> EBRT CT deformable image registration
- Combined BT + EBRT EQD2 dose assessed for OAR doses

Use Case – DIR for cervical HDR + EBRT dose accumulation

DIR_{image}, the entire image set was deformed using a free form deformable image registration algorithm with a normalised intensity similarity metric.

DIR_{cbd}, the bladder contour was given a DIR algorithm produces visual

Sometimes DIR algorithm produces visually unacceptable results

DIR_{masked}, masked the bladder contour to a value of 1000 HU and then the entire image was deformed using free form DIR

Joel.Poder@health.nsw.gov.au

Locally locked adjustments based on bones and ovoids

Visually acceptable result achieved with RegRefine

Use Case – DIR for cervical HDR + EBRT dose accumulation

		DIR _{image}	DIR _{cbd}	DIR _{masked}
	Bladder D2cc	2.2	1.4	0.7
Average dose accumulation consistency	Bladder D0.1cc	3.4	1.5	1.5

Additional weightings in algorithm leads to more reproducible results. **NB: it is critical to ensure there are contour weightings in a DIR algorithm for Gynae brachy DIR**

	DIR _{masked}
Percent difference in bladder D2cc (accumulated over three fractions) with and without DIR	-2.9
Percent difference in bladder D0.1cc (accumulated over three fractions	-4.2
Percent difference in rectum D2cc (accumulated over three fractions) with and without DIR	-2.3
Percent difference in rectum D0.1cc (accumulated over three fractions	-2.6

Use of deformable image registration techniques to estimate dose to organs at risk following prostate external beam radiation therapy and high-dose-rate brachytherapy

Marie Vozzo, BSc/BEng (hons), MSc¹, Joel Poder, MSc, PhD^{2,3}, Johnson Yuen, MSc^{2,4,5}, Joseph Bucci, MBBS FRACP FRANZCR², Annette Haworth, BSc (hons), MSc, PhD¹

¹School of Physics, University of Sydney, Sydney, Australia, ²St George Cancer Care Centre, Kogarah, Australia, ³Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia, ⁴South Western Clinical School, University of New South Wales, Sydney, Australia, ⁵Ingham Institute for Applied Medical Research, Sydney, Australia

- 10 patients, BT TRUS -> EBRT CT rigid and deformable image registration (structure guided)
- Combined BT + EBRT EQD2 dose assessed for rectum

Fig. 2. A) Sagittal section, example of successful rigid image registration method (RIR). B) Sagittal section, example of unsuccessful RIR. Contours: orange - TRUS prostate, blue - TRUS rectum, red - CT prostate, brown - CT rectum

- 10 patients prev. treated at STGCC with HDR prostate BT
- Retrospectively register diagnostic mpMRI & PET PSMA to BT planning TRUS image
- Compare RIR and DIR

Courtesy of Sam Radvan, USyd

JACOBIAN DETERMINANT

	VEND		OR 1			1		VEND	VENDOR 2			
	PET/CT		MRI		PET/CT		MRI					
Pt.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
1	-5.65	0.72	7.11	-3.61	0.96	7.03	0.45	0.83	1.65	0.00	0.63	1.36
2	-8.37	1.12	10.24	-5.93	1.15	7.76	0.71	0.94	1.41	0.00	0.58	1.25
3	-4.22	0.44	6.93	-2.90	1.17	6.14	1.08	1.48	1.82	0.00	1.00	1.54
4	-17.64	0.05	5.13	-2.36	1.16	8.2	0.96	1.39	2.09	0.00	0.96	1.68
5	-4.22	1.02	14.48	-3.44	1.00	7.45	0.89	1.25	1.89	0.00	0.86	1.98
6	-9.18	0.30	7.82	-4.52	0.78	5.68	0.96	1.44	2.14	0.00	0.81	1.29
7	-5.33	0.21	10.59	-3.72	1.13	9.31	0.72	1.05	1.43	0.00	1.01	1.64
8	-5.83	0.57	11.44	-2.68	0.76	4.77	1.17	1.59	2.10	0.00	0.73	1.54

Joel.Poder@health.nsw.gov.au

South Eastern Sydney Local Health District

		PET/CT		MRI				
Pt.	DSC MDA (mm)		HD (mm)	DSC	MDA (mm)	HD (mm)		
1	0.94	0.8	4.2	0.95	0.6	3.1		
2	0.92	0.8	3.9	0.93	0.7	2.8		
3	0.89	1.0	4.5	0.91	0.9	3.6		
4	0.91	0.9	4.0	0.93	0.7	3.3		
5	0.92	0.8	3.7	0.94	0.7	4.3		
6	0.92	0.8	3.7	0.93	0.7	3.0		
7	0.93	0.7	2.9	0.95	0.6	3.2		
8	0.91	0.8	4.2	0.92	0.7	3.0		
Avg. ± 1 sd.	0.92 ± 0.01	0.8 ± 0.1	3.9 ± 0.5	0.93 ± 0.01	0.7 ± 0.1	3.3 ± 0.4		

	Ρι	ostate Conto		
DSC		MDA (mm)	HD (mm)	
0.95		0.6		2.6

			DIL Contours		
	DSC		MDA (mm)	H	ID (mm)
(0.85 ± 0.0)5	0.4 ± 0.1	2	2.0 ± 0.2

- Retroperitoneal sarcoma
- Peritonectomy followed by interstitial brachytherapy to tumour bed
- 10 Gy / 1 Fx
- Sub-optimal coverage due to limitations in applicator placement necessitated EBRT treatment to untreated GTV.

BT Planning CT

Saline bag

Brachy catheter button

Health South Eastern Sydney Local Health District

- Blue = MRI GTV
- Red = BT PTV
- Green = BT 100% isodose
- Orange = EBRT PTV

- Blue = MRI GTV
- Red = BT PTV
- Green = BT 100% isodose
- Orange = EBRT PTV

Joel.Poder@

Health South Eastern Sydney Local Health District

Health South Eastern Sydney Local Health District

Future Directions

- DIR for BT is still largely confined to research space
- Improvement in multi-modality DIR algorithms required
- Tools to overcome presence of BT applicators in images are required
- DIR functionality in BTPS is very limited, vendors should implement DIR within BTPS
- Image registration QA tools in BTPS are very limited, vendors should implement these tools within BTPS

Thanks for your attention!

Questions?

The ACPSEM Medical Image Registration Special Interest Group (MIRSIG) Online Webinars

Questions and Answers from the September 2021 Webinar Chaired by Johnson Yuen (Talk 1 by Joel Poder on Brachytherapy Image Registration)

Question 1: How is training managed?

Answers: Training is managed by having a core team of 'expert' users who are well trained and routinely rostered onto image registration tasks. This core team is then responsible for training other staff in these tasks.

