MRI Linac

MRI Linac Working Group


Overview

In 2019 the ACPSEM Board resolved that the College should convene an MRI-Linac Working Group (MRILWG) in order that the ACPSEM is prepared for the safe clinical introduction and optimal use of MR-guided treatment units. Preparedness in this context applies to consideration of training and education requirements (TEAP, CPD and potential new initiatives) and providing leadership and influencing the quality and delivery of such therapies in an Australian and New Zealand context. Further, the MRILWG will support and promote technical and clinical research on current and future MRI-Linac systems.

Terms of References
  1. Develop recommendations for the ACPSEM Board with respect to:
               a.   Training and education requirements in support of Australasia’s current and future MRI-guided treatment unit implementation
               b.   Development of education and awareness programs for the broader College membership
               c.    Endorsement/development of code of practice for reference dosimetry, quality assurance and/or other documents as considered applicable
  2. Support and learn from College members involved in the safe clinical implementation of the MRI-guided Therapy programs, including providing a conduit for the collection and review of the experiences of other ACPSEM members with experience and/or exposure.
  3. Work to position ACPSEM to impact and inform government decisions and policies for MRI-guided treatment
  4. Educate and equip ACPSEM members to participate in and influence the implementation of local patient selection and planning processes
  5. Perform horizon scans to anticipate future needs as the technical and clinical MRI-Linac and potential MRI-particle therapy fields evolve.
  6. Collaborate and maintain effective communication with other working groups in the field
  7. Identify and promote high quality technical and clinical research using current and future MRI-Linacs
Members
  • Michael Jameson, NSW (chair)
  • Paul Keall, NSW (exec)
  • Matthew Sobolewski, NSW (exec)
  • Brendan Hill, QLD (secretary)
  • Kym Rykers, VIC
  • Linda Marsh, QLD
  • Lois Holloway, NSW
  • Luis Munoz, SA
  • Nicholas Cook, NZ
  • Reza Alinaghizadeh, VIC
  • Rhonda Brown, VIC (ACDS)
  • Stephen Gibson, QLD
  • Urszula Jelen, NSW
  • Mounir Ibrahim, WA
  • Jason Arts, NSW (Industry)
  • Maria Bellon, US (Industry)
  • Paul Liu, NSW
  • Peter Barnes, VIC (DIMP)
Subgroups 
  • Research Subgroup
  • Workforce Subgroup
  • Quality Assurance Subgroup
  • Dosimetry Subgroup
  • MR Safety Subgroup
  • Education Subgroup

 

ACPSEM MRILWG Table of Useful Documents

 

Year

Title

Comments

2010

ICRU Report on Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT) https://icru.org/testing/reports/prescribing-recording-and-reporting-intensity-modulated-photon-beam-therapy-imrt-icru-report-83 

In the process of being revised. 

2013

American College of Radiology (ACR) Guidance Document on MR Safe Practices[1]

In the process of being revised

2014

Seminars in Radiation Oncology issue on Magnetic Resonance Imaging in Radiation Oncology https://www.sciencedirect.com/journal/seminars-in-radiation-oncology/vol/24/issue/3

 

2015

American College of Radiology (ACR) Magnetic Resonance Imaging Quality Control Manual

 

2015

MHRA Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/476931/MRI_guidance_2015_-_4-02d1.pdf 

 

2018

Clinical Oncology issue on MRI and Radiotherapy https://www.clinicaloncologyonline.net/issue/S0936-6555(18)X0012-0

 

2019

Seminars in Radiation Oncology issue on Adaptive Radiotherapy and Automation https://www.sciencedirect.com/journal/seminars-in-radiation-oncology/vol/29/issue/3 

 

2019

Clinical and Translational Radiation Oncology Journal Special issue: Online MR-Guided Radiotherapy - A new era in radiotherapy https://www.ctro.science/radiotherapy  

 

2019

MRI for Radiotherapy Planning, Delivery, and Response Assessment. Editors: Gary Liney • Uulke van der Heide/ Springer- ISBN 978-3-030-14441-8

 

2020

Frontiers in Oncology MRI in Radiation Therapy https://www.frontiersin.org/research-topics/9123/magnetic-resonance-imaging-for-radiation-therapy 

 

TBD

ICRU 83 update. 

 

TBD

AAPM Task Groups/ESTRO/ASTRO/NRG guidelines/IPEM? 

 

TBD

European guideline on MRI-Linac dosimetry

 

 

 

 

 

Early Magnetic Field Monte Carlo Simulations and Measurements

 

1993

Bielajew AF, The effect of strong longitudinal magnetic fields on dose deposition from electron and photon beams. Medical Physics 20 (4):1171-1179

 

1996

Butson MJ, Wong TP, Law A, Law M, Mathur JN, Metcalfe PE, Magnetic repulsion of linear accelerator contaminates. Medical Physics 23 (6):953-955

 

2001

Litzenberg DW, Fraass BA, McShan DL, O'Donnell TW, Roberts DA, Becchetti FD, Bielajew AF, Moran JM, An apparatus for applying strong longitudinal magnetic fields to clinical photon and electron beams. Physics in Medicine & Biology 46 (5):N105

 

2001

Naqvi SA, Li XA, Ramahi SW, Chu JC, Ye SJ (2001) Reducing loss in lateral charged010particle equilibrium due to air cavities present in x010ray irradiated media by using longitudinal magnetic fields. Medical physics 28 (4):603-611

 

 

 

 

 

MRL – General

 

2008

Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hårdemark B, van Vulpen M, van der Heide UA, MRI/linac integration. Radiotherapy and Oncology 86 (1):25-29

 

2020

Christopher Kurz et al. Medical physics challenges in clinical MRguided radiotherapy. Kurz et al. Radiation Oncology 

 

 

 

 

 

MRL – First Images & First Beam On

 

2016

Liney GP, Dong B, Begg J, Vial P, Zhang K, Lee F, Walker A, Rai R, Causer T, Alnaghy SJ, Oborn BM, Holloway L, Metcalfe P, Barton M, Crozier S, Keall P, Experimental results from a prototype high-field inline MRI-linac. Medical Physics 43 (9):5188-5194. doi:doi:http://dx.doi.org/10.1118/1.4961395

 

2009

Fallone B, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Medical Physics 36 (6):2084-2088

 

 

 

 

 

First Patient & Clinical Implementation

 

2017

Raaymakers B, Jürgenliemk-Schulz I, Bol G, Glitzner M, Kotte A, Van Asselen B, De Boer J, Bluemink J, Hackett S, Moerland M (2017) First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine & Biology 62 (23):L41

 

2015

Olsen J, Green O, Kashani R (2015) World’s First Application of MR-Guidance for Radiotherapy. Missouri Medicine 112 (5):358

 

2017

Stanescu T, Jaffray D Development and clinical implementation of a hybrid system consisting of an MRI and medical linear accelerator. In: 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017. IEEE, pp 3697-3701

 

 

 

 

 

Magnetic Field Effects on Dose Deposition – In Water

 

2004

Raaymakers B, Raaijmakers A, Kotte A, Jette D, Lagendijk J (2004) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Physics in Medicine & Biology 49 (17):4109

 

 

 

 

 

Magentic Field Effects on Dose Deposition – Water/Air Interfaces and Lung Tissue

 

2005

Raaijmakers A, Raaymakers B, Lagendijk J (2005) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons. Physics in Medicine & Biology 50 (7):1363

 

2007

Raaijmakers A, Raaymakers B, Lagendijk J (2007) Experimental verification of magnetic field dose effects for the MRI-accelerator. Physics in Medicine & Biology 52 (14):4283

 

2008

Raaijmakers A, Raaymakers B, Lagendijk J (2008) Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Physics in Medicine and Biology 53 (4):909

 

2010

Kirkby C, Murray B, Rathee S, Fallone B (2010) Lung dosimetry in a linac010MRI radiotherapy unit with a longitudinal magnetic field. Medical Physics 37 (9):4722-4732

 

2016

Oborn BM, Ge Y, Hardcastle N, Metcalfe PE, Keall PJ (2016) Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Medical Physics 43 (1):368-377

 

2018

Alnaghy SJ, Begg J, Causer T, Alharthi T, Glaubes L, Dong B, George A, Holloway L, Metcalfe P (2018) Penumbral width trimming in solid lung dose profiles for 0.9 and 1.5 T MRI010Linac prototypes. Medical Physics 45 (1):479-487

 

 

 

 

 

Magnetic Field Effects on Dose Deposition – Outside Patient Scatter and Surface Dose Buildup

 

2007

Raaijmakers A, Raaymakers B, Van der Meer S, Lagendijk J (2007) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Physics in Medicine & Biology 52 (4):929

 

2009

Oborn B, Metcalfe PE, Butson M, Rosenfeld AB (2009) High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under the influence of transverse magnetic fields. Medical Physics 36 (8):3549-3559

 

2012

Oborn B, Metcalfe PE, Butson M, Rosenfeld AB, Keall P (2012) Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field. Medical Physics 39 (2):874-890

 

 

 

 

 

Magnetic Field Impact on Electrons in air outside body

 

2012

Oborn B, Metcalfe PE, Butson M, Rosenfeld AB, Keall P (2012) Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field. Medical Physics 39 (2):874-890

 

2018

Hackett SL, van Asselen B, Wolthaus JW, Bluemink J, Ishakoglu K, Kok J, Lagendijk JJ, Raaymakers BW (2018) Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field. Physics in Medicine & Biology 63 (9):095001

 

2019

Malkov VN, Hackett SL, Wolthaus JW, Raaymakers BW, Van Asselen B (2019) Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields. Physics in Medicine & Biology 64 (11):115029

 

2018

Park JM, Shin KH, Kim J-i, Park S-Y, Jeon SH, Choi N, Kim JH, Wu H-G (2018) Air–electron stream interactions during magnetic resonance IGRT. Strahlentherapie und Onkologie 194 (1):50-59 

 

2012

Keyvanloo A, Burke B, Warkentin B, Tadic T, Rathee S, Kirkby C, Santos D, Fallone B (2012) Skin dose in longitudinal and transverse linac010MRIs using Monte Carlo and realistic 3D MRI field models. Medical Physics 39 (10):6509-652

 

 

 

 

 

MRL B Field Homogeneity and Geometric Distortion

 

2019

Jackson S, Glitzner M, Tijssen RH, Raaymakers BW (2019) MRI B 0 homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. Physics in Medicine & Biology 64 (12):12NT01

 

2018

T. Stanescua, D. Jaffray (2018)Technical Note: Harmonic analysis applied to MR image distortion fields

specific to arbitrarily shaped volumes. Med. Phys. 45 (8), August 2018

 

2018

Xinyuan Chen, Jianrong Dai. Quantitative analysis of image quality for acceptance and commissioning of an MRI simulator with a semiautomatic method. J Appl Clin Med Phys 2018; 19:3:326–335

 

2016

Chia-ho Hua, Jinsoo Uh. How do you commission and implement an MRI system for radiation therapy planning?. Philips white paper

 

2016

Aitang Xing et al. Commissioning and quality control of a dedicated wide bore 3T MRI simulator for radiotherapy planning. International Journal of Cancer Therapy and Oncology

 

2015

Beth Erickson, Chris Schultz, and X. Allen Li. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med. Phys. 42 (1), January 2015

 

2013

G P LINEY et al. 2013 Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer. the British Institute of Radiology 

 

 

 

 

 

Reference Dose Measurements in the MRL

 

2009

Meijsing I, Raaymakers B, Raaijmakers A, Kok J, Hogeweg L, Liu B, Lagendijk J (2009) Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber. Physics in Medicine and Biology 54 (10):2993

 

2013

Smit K, Van Asselen B, Kok J, Aalbers A, Lagendijk J, Raaymakers B (2013) Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading. Physics in Medicine and Biology 58 (17):5945

 

2013

Reynolds M, Fallone BG, Rathee S (2013) Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields. Medical Physics 40 (4):-. doi:doi:http://dx.doi.org/10.1118/1.4794496

 

2016

O'Brien D, Roberts D, Ibbott G, Sawakuchi G (2016) Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Medical Physics 43 (8):4915-4927

 

2016

de Prez L, de Pooter J, Jansen B, Aalbers T (2016) A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment. Physics in Medicine and Biology 61 (13):5051-5076

 

2017

Spindeldreier C, Schrenk O, Bakenecker A, Kawrakow I, Burigo L, Karger C, Greilich S, Pfaffenberger A (2017) Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Physics in Medicine & Biology 62 (16):6708

 

2018

Malkov VN, Rogers D (2018) Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. Medical physics 45 (2):908-925

 

2018

van Asselen B, Woodings SJ, Hackett SL, van Soest TL, Kok JG, Raaymakers BW, Wolthaus JW (2018) A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Physics in Medicine & Biology 63 (12):125008

 

2018

de Prez LA, de Pooter JA, Jansen BJ, Woodings SJ, Wolthaus JW, van Asselen B, van Soest TL, Kok JG, Raaymakers BW (2018) Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields. Physics in Medicine and Biology

 

2018

Pojtinger S, Dohm OS, Kapsch R-P, Thorwarth D (2018) Ionization chamber correction factors for MR-linacs. Physics in Medicine & Biology 63 (11):11NT03

 

2019

de Prez L, Woodings S, de Pooter J, van Asselen B, Wolthaus J, Jansen B, Raaymakers B (2019) Direct measurement of ion chamber correction factors, k Q and k B, in a 7 MV MRI-linac. Physics in Medicine & Biology 64 (10):105025

 

2019

Pojtinger S, Kapsch R-P, Dohm OS, Thorwarth D (2019) A finite element method for the determination of the relative response of ionization chambers in MR-linacs: simulation and experimental validation up to 1.5 T. Physics in Medicine & Biology 64 (13):135011

 

2019

Woodings S, van Asselen B, van Soest T, de Prez L, Lagendijk J, Raaymakers B, Wolthaus J (2019) Consistency of PTW30013 and FC65010G ion chamber magnetic field correction factors. Medical physics 46 (8):3739-3745

 

2020

Billas I, Bouchard H, Oelfke U, Shipley D, Gouldstone C, Duane S (2020) Alanine dosimetry in strong magnetic fields: use as a transfer standard in MRI-guided radiotherapy. Physics in Medicine & Biology 65 (11):115001

 

2020

de Pooter JA, Billas I, de Prez LA, Duane S, Kapsch R-P, Karger C, van Asselen B, Wolthaus JW (2020) Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a code of practice. Physics in Medicine & Biology

 

2020

Pojtinger S, Nachbar M, Ghandour S, Pisaturo O, Pachoud M, Kapsch R-P, Thorwarth D (2020) Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations. Physics in Medicine & Biology 65 (24):245044

 

2020

Pojtinger S, Nachbar M, Kapsch R-P, Thorwarth D (2020) Influence of beam quality on reference dosimetry correction factors in magnetic resonance guided radiation therapy. Physics and Imaging in Radiation Oncology 16:95-98

 

2020

Shukla BK, Spindeldreier CK, Schrenk O, Bakenecker AC, Klüter S, Kawrakow I, Runz A, Burigo L, Karger CP, Greilich S (2020) Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers. Physica Medica 80:259-266

 

 

 

 

 

MRL Impact of Air Gaps around dosimetry equipment

 

2016

Hackett S, Van Asselen B, Wolthaus J, Kok J, Woodings S, Lagendijk J, Raaymakers B (2016) Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR010linac? Medical physics 43 (7):3961-3968

 

2017

Agnew J, O’Grady F, Young R, Duane S, Budgell GJ (2017) Quantification of static magnetic field effects on radiotherapy ionization chambers. Physics in Medicine and Biology 62 (5):1731

 

2017

O'Brien DJ, Sawakuchi GO (2017) Monte Carlo study of the chamber010phantom air gap effect in a magnetic field. Medical physics 44 (7):3830-3838

 

 

 

 

 

Magnetic Field Effects on Relative Dose Equipment

 

2014

Smit K, Kok J, Lagendijk J, Raaymakers B (2014) Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field. Physics in Medicine and Biology 59 (7):1845

 

2014

Smit K, Sjöholm J, Kok J, Lagendijk J, Raaymakers B (2014) Relative dosimetry in a 1.5 T magnetic field: an MR-linac compatible prototype scanning water phantom. Physics in Medicine and Biology 59 (15):4099

 

2016

Houweling A, De Vries J, Wolthaus J, Woodings S, Kok J, Van Asselen B, Smit K, Bel A, Lagendijk J, Raaymakers B (2016) Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine & Biology 61 (3):N80

 

2018

Woodings SJ, Wolthaus JW, van Asselen B, De Vries J, Kok JG, Lagendijk J, Raaymakers BW (2018) Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac. Physics in Medicine & Biology 63 (5):05NT04

 

2018

O'Brien DJ, Dolan J, Pencea S, Schupp N, Sawakuchi GO (2018) Relative dosimetry with an MR010linac: Response of ion chambers, diamond, and diode detectors for off010axis, depth dose, and output factor measurements. Medical physics 45 (2):884-897

 

 

 

 

 

MRL General Commissioning and Characterisation

 

2018

Wang J, Yung J, Kadbi M, Hwang K, Ding Y, Ibbott GS (2018) Assessment of image quality and scatter and leakage radiation of an integrated MR010LINAC system. Medical physics 45 (3):1204-1209

 

2018

Woodings SJ, Bluemink J, De Vries J, Niatsetski Y, van Veelen B, Schillings J, Kok JG, Wolthaus JW, Hackett SL, van Asselen B (2018) Beam characterisation of the 1.5 T MRI-linac. Physics in Medicine & Biology 63 (8):085015

 

2019

Tijssen RH, Philippens ME, Paulson ES, Glitzner M, Chugh B, Wetscherek A, Dubec M, Wang J, van der Heide UA (2019) MRI commissioning of 1.5 T MR-linac systems–a multi-institutional study. Radiotherapy and Oncology 132:114-120

 

2020

Snyder JE, St010Aubin J, Yaddanapudi S, Boczkowski A, Dunkerley DA, Graves SA, Hyer DE (2020) Commissioning of a 1.5 T Elekta Unity MR010linac: A single institution experience. Journal of Applied Clinical Medical Physics 21 (7):160-172

 

2020

Mittauer KE, Yadav P, Paliwal B, Bayouth JE (2020) Characterization of positional accuracy of a double010focused and double010stack multileaf collimator on an MR010Guided Radiotherapy (MRgRT) linac using an IC010profiler array. Medical physics 47 (2):317-330

 

 

 

 

 

MRL End to End Testing

 

2015

Wooten HO, Rodriguez V, Green O, Kashani R, Santanam L, Tanderup K, Mutic S, Li HH (2015) Benchmark IMRT evaluation of a Co-60 MRI-guided radiation therapy system. Radiotherapy and Oncology 114 (3):402-405

 

2017

Rankine LJ, Mein S, Cai B, Curcuru A, Juang T, Miles D, Mutic S, Wang Y, Oldham M, Li HH (2017) Three-dimensional dosimetric validation of a magnetic resonance guided intensity modulated radiation therapy system. International Journal of Radiation Oncology Biology Physics 97 (5):1095-1104

 

2020

Stark LS, Andratschke N, Baumgartl M, Bogowicz M, Chamberlain M, Dal Bello R, Ehrbar S, Garcia ZG, Guckenberger M, Krayenbühl J (2020) Dosimetric and geometric end-to-end accuracy of a magnetic resonance guided linear accelerator. Physics and Imaging in Radiation Oncology 16:109-112

 

2020

Hoffmans D, Niebuhr N, Bohoudi O, Pfaffenberger A, Palacios M (2020) An end-to-end test for MR-guided online adaptive radiotherapy. Physics in Medicine & Biology 65 (12):125012

 

2020

Chen X, Ahunbay E, Paulson ES, Chen G, Li XA (2020) A daily end010to010end quality assurance workflow for MR010guided online adaptive radiation therapy on MR010Linac. Journal of applied clinical medical physics 21 (1):205-212

 

 

 

 

 

MRL Adaptive IMRT Treatments

 

2015

Kontaxis C, Bol G, Lagendijk J, Raaymakers B (2015) Towards adaptive IMRT sequencing for the MR-linac. Physics in Medicine & Biology 60 (6):2493

 

2016

Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y (2016) Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. International Journal of Radiation Oncology Biology Physics 94 (2):394-403

 

2017

Lamb J, Cao M, Kishan A, Agazaryan N, Thomas DH, Shaverdian N, Yang Y, Ray S, Low DA, Raldow A (2017) Online adaptive radiation therapy: implementation of a new process of care. Cureus 9 (8)

 

 

 

 

 

MRL Guided Gating

 

2017

Lamb JM, Ginn JS, O'Connell DP, Agazaryan N, Cao M, Thomas DH, Yang Y, Lazea M, Lee P, Low DA (2017) Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film. Journal of applied clinical medical physics 18 (3):163-169

 

 

 

 

 

MRL Arc Delivery Proof of Concept

 

2020

Kontaxis C, Woodhead PL, Bol GH, Lagendijk JJ, Raaymakers BW (2020) Proof-of-concept delivery of intensity modulated arc therapy on the Elekta Unity 1.5 T MR-linac. Physics in Medicine & Biology

 

 

 

 

 

Magnetic Fringe Field Impact on Nearby Clinical Equipment

 

2009

Kok J, Raaymakers B, Lagendijk J, Overweg J, De Graaff C, Brown K (2009) Installation of the 1.5 T MRI accelerator next to clinical accelerators: impact of the fringe field. Physics in Medicine and Biology 54 (18):N409

 

2017

Perik T, Kaas J, Wittkämper F (2017) The impact of a 1.5 T MRI linac fringe field on neighbouring linear accelerators. Physics and Imaging in Radiation Oncology 4:12-16

 

 

 

 

 

Magnetic Fringe Field Impact on Linac Equipment in MRL

 

2010

St Aubin J, Santos D, Steciw S, Fallone B (2010) Effect of longitudinal magnetic fields on a simulated in010line 6 MV linac. Medical Physics 37 (9):4916-4923

 

2010

St Aubin J, Steciw S, Fallone B (2010) Effect of transverse magnetic fields on a simulated in-line 6 MV linac. Physics in Medicine and Biology 55 (16):4861

 

2010

St. Aubin J, Steciw S, Fallone B (2010) Magnetic decoupling of the linac in a low field biplanar linac010MR system. Medical physics 37 (9):4755-4761

 

2011

Constantin DE, Fahrig R, Keall PJ (2011) A study of the effect of in010line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Medical physics 38 (7):4174-4185

 

2012

Santos D, St. Aubin J, Fallone B, Steciw S (2012) Magnetic shielding investigation for a 6 MV in010line linac within the parallel configuration of a linac010MR system. Medical physics 39 (2):788-797

 

2014

Constantin DE, Holloway L, Keall PJ, Fahrig R (2014) A novel electron gun for inline MRI010linac configurations. Medical physics 41 (2):022301

 

2016

Whelan B, Holloway L, Constantin D, Oborn B, Bazalova010Carter M, Fahrig R, Keall P (2016) Performance of a clinical gridded electron gun in magnetic fields: Implications for MRI010linac therapy. Medical Physics 43 (11):5903-5914. doi:doi:10.1118/1.4963216