In 2019 the ACPSEM Board resolved that the College should convene an MRI-Linac Working Group (MRILWG) in order that the ACPSEM is prepared for the safe clinical introduction and optimal use of MR-guided treatment units. Preparedness in this context applies to consideration of training and education requirements (TEAP, CPD and potential new initiatives) and providing leadership and influencing the quality and delivery of such therapies in an Australian and New Zealand context. Further, the MRILWG will support and promote technical and clinical research on current and future MRI-Linac systems.
ACPSEM MRILWG Table of Useful Documents
Year |
Title |
Comments |
2010 |
ICRU Report on Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT) https://icru.org/testing/reports/prescribing-recording-and-reporting-intensity-modulated-photon-beam-therapy-imrt-icru-report-83 |
In the process of being revised. |
2013 |
American College of Radiology (ACR) Guidance Document on MR Safe Practices[1] |
In the process of being revised |
2014 |
Seminars in Radiation Oncology issue on Magnetic Resonance Imaging in Radiation Oncology https://www.sciencedirect.com/journal/seminars-in-radiation-oncology/vol/24/issue/3 |
|
2015 |
American College of Radiology (ACR) Magnetic Resonance Imaging Quality Control Manual |
|
2015 |
MHRA Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/476931/MRI_guidance_2015_-_4-02d1.pdf |
|
2018 |
Clinical Oncology issue on MRI and Radiotherapy https://www.clinicaloncologyonline.net/issue/S0936-6555(18)X0012-0 |
|
2019 |
Seminars in Radiation Oncology issue on Adaptive Radiotherapy and Automation https://www.sciencedirect.com/journal/seminars-in-radiation-oncology/vol/29/issue/3 |
|
2019 |
Clinical and Translational Radiation Oncology Journal Special issue: Online MR-Guided Radiotherapy - A new era in radiotherapy https://www.ctro.science/radiotherapy |
|
2019 |
MRI for Radiotherapy Planning, Delivery, and Response Assessment. Editors: Gary Liney • Uulke van der Heide/ Springer- ISBN 978-3-030-14441-8 |
|
2020 |
Frontiers in Oncology MRI in Radiation Therapy https://www.frontiersin.org/research-topics/9123/magnetic-resonance-imaging-for-radiation-therapy |
|
TBD |
ICRU 83 update. |
|
TBD |
AAPM Task Groups/ESTRO/ASTRO/NRG guidelines/IPEM? |
|
TBD |
European guideline on MRI-Linac dosimetry |
|
|
|
|
|
Early Magnetic Field Monte Carlo Simulations and Measurements |
|
1993 |
Bielajew AF, The effect of strong longitudinal magnetic fields on dose deposition from electron and photon beams. Medical Physics 20 (4):1171-1179 |
|
1996 |
Butson MJ, Wong TP, Law A, Law M, Mathur JN, Metcalfe PE, Magnetic repulsion of linear accelerator contaminates. Medical Physics 23 (6):953-955 |
|
2001 |
Litzenberg DW, Fraass BA, McShan DL, O'Donnell TW, Roberts DA, Becchetti FD, Bielajew AF, Moran JM, An apparatus for applying strong longitudinal magnetic fields to clinical photon and electron beams. Physics in Medicine & Biology 46 (5):N105 |
|
2001 |
Naqvi SA, Li XA, Ramahi SW, Chu JC, Ye SJ (2001) Reducing loss in lateral charged010particle equilibrium due to air cavities present in x010ray irradiated media by using longitudinal magnetic fields. Medical physics 28 (4):603-611 |
|
|
|
|
|
MRL – General |
|
2008 |
Lagendijk JJ, Raaymakers BW, Raaijmakers AJ, Overweg J, Brown KJ, Kerkhof EM, van der Put RW, Hårdemark B, van Vulpen M, van der Heide UA, MRI/linac integration. Radiotherapy and Oncology 86 (1):25-29 |
|
2020 |
Christopher Kurz et al. Medical physics challenges in clinical MRguided radiotherapy. Kurz et al. Radiation Oncology |
|
|
|
|
|
MRL – First Images & First Beam On |
|
2016 |
Liney GP, Dong B, Begg J, Vial P, Zhang K, Lee F, Walker A, Rai R, Causer T, Alnaghy SJ, Oborn BM, Holloway L, Metcalfe P, Barton M, Crozier S, Keall P, Experimental results from a prototype high-field inline MRI-linac. Medical Physics 43 (9):5188-5194. doi:doi:http://dx.doi.org/10.1118/1.4961395 |
|
2009 |
Fallone B, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Medical Physics 36 (6):2084-2088 |
|
|
|
|
|
First Patient & Clinical Implementation |
|
2017 |
Raaymakers B, Jürgenliemk-Schulz I, Bol G, Glitzner M, Kotte A, Van Asselen B, De Boer J, Bluemink J, Hackett S, Moerland M (2017) First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Physics in Medicine & Biology 62 (23):L41 |
|
2015 |
Olsen J, Green O, Kashani R (2015) World’s First Application of MR-Guidance for Radiotherapy. Missouri Medicine 112 (5):358 |
|
2017 |
Stanescu T, Jaffray D Development and clinical implementation of a hybrid system consisting of an MRI and medical linear accelerator. In: 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017. IEEE, pp 3697-3701 |
|
|
|
|
|
Magnetic Field Effects on Dose Deposition – In Water |
|
2004 |
Raaymakers B, Raaijmakers A, Kotte A, Jette D, Lagendijk J (2004) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Physics in Medicine & Biology 49 (17):4109 |
|
|
|
|
|
Magentic Field Effects on Dose Deposition – Water/Air Interfaces and Lung Tissue |
|
2005 |
Raaijmakers A, Raaymakers B, Lagendijk J (2005) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons. Physics in Medicine & Biology 50 (7):1363 |
|
2007 |
Raaijmakers A, Raaymakers B, Lagendijk J (2007) Experimental verification of magnetic field dose effects for the MRI-accelerator. Physics in Medicine & Biology 52 (14):4283 |
|
2008 |
Raaijmakers A, Raaymakers B, Lagendijk J (2008) Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Physics in Medicine and Biology 53 (4):909 |
|
2010 |
Kirkby C, Murray B, Rathee S, Fallone B (2010) Lung dosimetry in a linac010MRI radiotherapy unit with a longitudinal magnetic field. Medical Physics 37 (9):4722-4732 |
|
2016 |
Oborn BM, Ge Y, Hardcastle N, Metcalfe PE, Keall PJ (2016) Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Medical Physics 43 (1):368-377 |
|
2018 |
Alnaghy SJ, Begg J, Causer T, Alharthi T, Glaubes L, Dong B, George A, Holloway L, Metcalfe P (2018) Penumbral width trimming in solid lung dose profiles for 0.9 and 1.5 T MRI010Linac prototypes. Medical Physics 45 (1):479-487 |
|
|
|
|
|
Magnetic Field Effects on Dose Deposition – Outside Patient Scatter and Surface Dose Buildup |
|
2007 |
Raaijmakers A, Raaymakers B, Van der Meer S, Lagendijk J (2007) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field. Physics in Medicine & Biology 52 (4):929 |
|
2009 |
Oborn B, Metcalfe PE, Butson M, Rosenfeld AB (2009) High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under the influence of transverse magnetic fields. Medical Physics 36 (8):3549-3559 |
|
2012 |
Oborn B, Metcalfe PE, Butson M, Rosenfeld AB, Keall P (2012) Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field. Medical Physics 39 (2):874-890 |
|
|
|
|
|
Magnetic Field Impact on Electrons in air outside body |
|
2012 |
Oborn B, Metcalfe PE, Butson M, Rosenfeld AB, Keall P (2012) Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field. Medical Physics 39 (2):874-890 |
|
2018 |
Hackett SL, van Asselen B, Wolthaus JW, Bluemink J, Ishakoglu K, Kok J, Lagendijk JJ, Raaymakers BW (2018) Spiraling contaminant electrons increase doses to surfaces outside the photon beam of an MRI-linac with a perpendicular magnetic field. Physics in Medicine & Biology 63 (9):095001 |
|
2019 |
Malkov VN, Hackett SL, Wolthaus JW, Raaymakers BW, Van Asselen B (2019) Monte Carlo simulations of out-of-field surface doses due to the electron streaming effect in orthogonal magnetic fields. Physics in Medicine & Biology 64 (11):115029 |
|
2018 |
Park JM, Shin KH, Kim J-i, Park S-Y, Jeon SH, Choi N, Kim JH, Wu H-G (2018) Air–electron stream interactions during magnetic resonance IGRT. Strahlentherapie und Onkologie 194 (1):50-59 |
|
2012 |
Keyvanloo A, Burke B, Warkentin B, Tadic T, Rathee S, Kirkby C, Santos D, Fallone B (2012) Skin dose in longitudinal and transverse linac010MRIs using Monte Carlo and realistic 3D MRI field models. Medical Physics 39 (10):6509-652 |
|
|
|
|
|
MRL B Field Homogeneity and Geometric Distortion |
|
2019 |
Jackson S, Glitzner M, Tijssen RH, Raaymakers BW (2019) MRI B 0 homogeneity and geometric distortion with continuous linac gantry rotation on an Elekta Unity MR-linac. Physics in Medicine & Biology 64 (12):12NT01 |
|
2018 |
T. Stanescua, D. Jaffray (2018)Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes. Med. Phys. 45 (8), August 2018 |
|
2018 |
Xinyuan Chen, Jianrong Dai. Quantitative analysis of image quality for acceptance and commissioning of an MRI simulator with a semiautomatic method. J Appl Clin Med Phys 2018; 19:3:326–335 |
|
2016 |
Chia-ho Hua, Jinsoo Uh. How do you commission and implement an MRI system for radiation therapy planning?. Philips white paper |
|
2016 |
Aitang Xing et al. Commissioning and quality control of a dedicated wide bore 3T MRI simulator for radiotherapy planning. International Journal of Cancer Therapy and Oncology |
|
2015 |
Beth Erickson, Chris Schultz, and X. Allen Li. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med. Phys. 42 (1), January 2015 |
|
2013 |
G P LINEY et al. 2013 Commissioning of a new wide-bore MRI scanner for radiotherapy planning of head and neck cancer. the British Institute of Radiology |
|
|
|
|
|
Reference Dose Measurements in the MRL |
|
2009 |
Meijsing I, Raaymakers B, Raaijmakers A, Kok J, Hogeweg L, Liu B, Lagendijk J (2009) Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber. Physics in Medicine and Biology 54 (10):2993 |
|
2013 |
Smit K, Van Asselen B, Kok J, Aalbers A, Lagendijk J, Raaymakers B (2013) Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading. Physics in Medicine and Biology 58 (17):5945 |
|
2013 |
Reynolds M, Fallone BG, Rathee S (2013) Dose response of selected ion chambers in applied homogeneous transverse and longitudinal magnetic fields. Medical Physics 40 (4):-. doi:doi:http://dx.doi.org/10.1118/1.4794496 |
|
2016 |
O'Brien D, Roberts D, Ibbott G, Sawakuchi G (2016) Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors. Medical Physics 43 (8):4915-4927 |
|
2016 |
de Prez L, de Pooter J, Jansen B, Aalbers T (2016) A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment. Physics in Medicine and Biology 61 (13):5051-5076 |
|
2017 |
Spindeldreier C, Schrenk O, Bakenecker A, Kawrakow I, Burigo L, Karger C, Greilich S, Pfaffenberger A (2017) Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Physics in Medicine & Biology 62 (16):6708 |
|
2018 |
Malkov VN, Rogers D (2018) Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. Medical physics 45 (2):908-925 |
|
2018 |
van Asselen B, Woodings SJ, Hackett SL, van Soest TL, Kok JG, Raaymakers BW, Wolthaus JW (2018) A formalism for reference dosimetry in photon beams in the presence of a magnetic field. Physics in Medicine & Biology 63 (12):125008 |
|
2018 |
de Prez LA, de Pooter JA, Jansen BJ, Woodings SJ, Wolthaus JW, van Asselen B, van Soest TL, Kok JG, Raaymakers BW (2018) Commissioning of a water calorimeter as a primary standard for absorbed dose to water in magnetic fields. Physics in Medicine and Biology |
|
2018 |
Pojtinger S, Dohm OS, Kapsch R-P, Thorwarth D (2018) Ionization chamber correction factors for MR-linacs. Physics in Medicine & Biology 63 (11):11NT03 |
|
2019 |
de Prez L, Woodings S, de Pooter J, van Asselen B, Wolthaus J, Jansen B, Raaymakers B (2019) Direct measurement of ion chamber correction factors, k Q and k B, in a 7 MV MRI-linac. Physics in Medicine & Biology 64 (10):105025 |
|
2019 |
Pojtinger S, Kapsch R-P, Dohm OS, Thorwarth D (2019) A finite element method for the determination of the relative response of ionization chambers in MR-linacs: simulation and experimental validation up to 1.5 T. Physics in Medicine & Biology 64 (13):135011 |
|
2019 |
Woodings S, van Asselen B, van Soest T, de Prez L, Lagendijk J, Raaymakers B, Wolthaus J (2019) Consistency of PTW30013 and FC65010G ion chamber magnetic field correction factors. Medical physics 46 (8):3739-3745 |
|
2020 |
Billas I, Bouchard H, Oelfke U, Shipley D, Gouldstone C, Duane S (2020) Alanine dosimetry in strong magnetic fields: use as a transfer standard in MRI-guided radiotherapy. Physics in Medicine & Biology 65 (11):115001 |
|
2020 |
de Pooter JA, Billas I, de Prez LA, Duane S, Kapsch R-P, Karger C, van Asselen B, Wolthaus JW (2020) Reference dosimetry in MRI-linacs: evaluation of available protocols and data to establish a code of practice. Physics in Medicine & Biology |
|
2020 |
Pojtinger S, Nachbar M, Ghandour S, Pisaturo O, Pachoud M, Kapsch R-P, Thorwarth D (2020) Experimental determination of magnetic field correction factors for ionization chambers in parallel and perpendicular orientations. Physics in Medicine & Biology 65 (24):245044 |
|
2020 |
Pojtinger S, Nachbar M, Kapsch R-P, Thorwarth D (2020) Influence of beam quality on reference dosimetry correction factors in magnetic resonance guided radiation therapy. Physics and Imaging in Radiation Oncology 16:95-98 |
|
2020 |
Shukla BK, Spindeldreier CK, Schrenk O, Bakenecker AC, Klüter S, Kawrakow I, Runz A, Burigo L, Karger CP, Greilich S (2020) Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers. Physica Medica 80:259-266 |
|
|
|
|
|
MRL Impact of Air Gaps around dosimetry equipment |
|
2016 |
Hackett S, Van Asselen B, Wolthaus J, Kok J, Woodings S, Lagendijk J, Raaymakers B (2016) Consequences of air around an ionization chamber: Are existing solid phantoms suitable for reference dosimetry on an MR010linac? Medical physics 43 (7):3961-3968 |
|
2017 |
Agnew J, O’Grady F, Young R, Duane S, Budgell GJ (2017) Quantification of static magnetic field effects on radiotherapy ionization chambers. Physics in Medicine and Biology 62 (5):1731 |
|
2017 |
O'Brien DJ, Sawakuchi GO (2017) Monte Carlo study of the chamber010phantom air gap effect in a magnetic field. Medical physics 44 (7):3830-3838 |
|
|
|
|
|
Magnetic Field Effects on Relative Dose Equipment |
|
2014 |
Smit K, Kok J, Lagendijk J, Raaymakers B (2014) Performance of a multi-axis ionization chamber array in a 1.5 T magnetic field. Physics in Medicine and Biology 59 (7):1845 |
|
2014 |
Smit K, Sjöholm J, Kok J, Lagendijk J, Raaymakers B (2014) Relative dosimetry in a 1.5 T magnetic field: an MR-linac compatible prototype scanning water phantom. Physics in Medicine and Biology 59 (15):4099 |
|
2016 |
Houweling A, De Vries J, Wolthaus J, Woodings S, Kok J, Van Asselen B, Smit K, Bel A, Lagendijk J, Raaymakers B (2016) Performance of a cylindrical diode array for use in a 1.5 T MR-linac. Physics in Medicine & Biology 61 (3):N80 |
|
2018 |
Woodings SJ, Wolthaus JW, van Asselen B, De Vries J, Kok JG, Lagendijk J, Raaymakers BW (2018) Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac. Physics in Medicine & Biology 63 (5):05NT04 |
|
2018 |
O'Brien DJ, Dolan J, Pencea S, Schupp N, Sawakuchi GO (2018) Relative dosimetry with an MR010linac: Response of ion chambers, diamond, and diode detectors for off010axis, depth dose, and output factor measurements. Medical physics 45 (2):884-897 |
|
|
|
|
|
MRL General Commissioning and Characterisation |
|
2018 |
Wang J, Yung J, Kadbi M, Hwang K, Ding Y, Ibbott GS (2018) Assessment of image quality and scatter and leakage radiation of an integrated MR010LINAC system. Medical physics 45 (3):1204-1209 |
|
2018 |
Woodings SJ, Bluemink J, De Vries J, Niatsetski Y, van Veelen B, Schillings J, Kok JG, Wolthaus JW, Hackett SL, van Asselen B (2018) Beam characterisation of the 1.5 T MRI-linac. Physics in Medicine & Biology 63 (8):085015 |
|
2019 |
Tijssen RH, Philippens ME, Paulson ES, Glitzner M, Chugh B, Wetscherek A, Dubec M, Wang J, van der Heide UA (2019) MRI commissioning of 1.5 T MR-linac systems–a multi-institutional study. Radiotherapy and Oncology 132:114-120 |
|
2020 |
Snyder JE, St010Aubin J, Yaddanapudi S, Boczkowski A, Dunkerley DA, Graves SA, Hyer DE (2020) Commissioning of a 1.5 T Elekta Unity MR010linac: A single institution experience. Journal of Applied Clinical Medical Physics 21 (7):160-172 |
|
2020 |
Mittauer KE, Yadav P, Paliwal B, Bayouth JE (2020) Characterization of positional accuracy of a double010focused and double010stack multileaf collimator on an MR010Guided Radiotherapy (MRgRT) linac using an IC010profiler array. Medical physics 47 (2):317-330 |
|
|
|
|
|
MRL End to End Testing |
|
2015 |
Wooten HO, Rodriguez V, Green O, Kashani R, Santanam L, Tanderup K, Mutic S, Li HH (2015) Benchmark IMRT evaluation of a Co-60 MRI-guided radiation therapy system. Radiotherapy and Oncology 114 (3):402-405 |
|
2017 |
Rankine LJ, Mein S, Cai B, Curcuru A, Juang T, Miles D, Mutic S, Wang Y, Oldham M, Li HH (2017) Three-dimensional dosimetric validation of a magnetic resonance guided intensity modulated radiation therapy system. International Journal of Radiation Oncology Biology Physics 97 (5):1095-1104 |
|
2020 |
Stark LS, Andratschke N, Baumgartl M, Bogowicz M, Chamberlain M, Dal Bello R, Ehrbar S, Garcia ZG, Guckenberger M, Krayenbühl J (2020) Dosimetric and geometric end-to-end accuracy of a magnetic resonance guided linear accelerator. Physics and Imaging in Radiation Oncology 16:109-112 |
|
2020 |
Hoffmans D, Niebuhr N, Bohoudi O, Pfaffenberger A, Palacios M (2020) An end-to-end test for MR-guided online adaptive radiotherapy. Physics in Medicine & Biology 65 (12):125012 |
|
2020 |
Chen X, Ahunbay E, Paulson ES, Chen G, Li XA (2020) A daily end010to010end quality assurance workflow for MR010guided online adaptive radiation therapy on MR010Linac. Journal of applied clinical medical physics 21 (1):205-212 |
|
|
|
|
|
MRL Adaptive IMRT Treatments |
|
2015 |
Kontaxis C, Bol G, Lagendijk J, Raaymakers B (2015) Towards adaptive IMRT sequencing for the MR-linac. Physics in Medicine & Biology 60 (6):2493 |
|
2016 |
Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y (2016) Online magnetic resonance image guided adaptive radiation therapy: first clinical applications. International Journal of Radiation Oncology Biology Physics 94 (2):394-403 |
|
2017 |
Lamb J, Cao M, Kishan A, Agazaryan N, Thomas DH, Shaverdian N, Yang Y, Ray S, Low DA, Raldow A (2017) Online adaptive radiation therapy: implementation of a new process of care. Cureus 9 (8) |
|
|
|
|
|
MRL Guided Gating |
|
2017 |
Lamb JM, Ginn JS, O'Connell DP, Agazaryan N, Cao M, Thomas DH, Yang Y, Lazea M, Lee P, Low DA (2017) Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film. Journal of applied clinical medical physics 18 (3):163-169 |
|
|
|
|
|
MRL Arc Delivery Proof of Concept |
|
2020 |
Kontaxis C, Woodhead PL, Bol GH, Lagendijk JJ, Raaymakers BW (2020) Proof-of-concept delivery of intensity modulated arc therapy on the Elekta Unity 1.5 T MR-linac. Physics in Medicine & Biology |
|
|
|
|
|
Magnetic Fringe Field Impact on Nearby Clinical Equipment |
|
2009 |
Kok J, Raaymakers B, Lagendijk J, Overweg J, De Graaff C, Brown K (2009) Installation of the 1.5 T MRI accelerator next to clinical accelerators: impact of the fringe field. Physics in Medicine and Biology 54 (18):N409 |
|
2017 |
Perik T, Kaas J, Wittkämper F (2017) The impact of a 1.5 T MRI linac fringe field on neighbouring linear accelerators. Physics and Imaging in Radiation Oncology 4:12-16 |
|
|
|
|
|
Magnetic Fringe Field Impact on Linac Equipment in MRL |
|
2010 |
St Aubin J, Santos D, Steciw S, Fallone B (2010) Effect of longitudinal magnetic fields on a simulated in010line 6 MV linac. Medical Physics 37 (9):4916-4923 |
|
2010 |
St Aubin J, Steciw S, Fallone B (2010) Effect of transverse magnetic fields on a simulated in-line 6 MV linac. Physics in Medicine and Biology 55 (16):4861 |
|
2010 |
St. Aubin J, Steciw S, Fallone B (2010) Magnetic decoupling of the linac in a low field biplanar linac010MR system. Medical physics 37 (9):4755-4761 |
|
2011 |
Constantin DE, Fahrig R, Keall PJ (2011) A study of the effect of in010line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators. Medical physics 38 (7):4174-4185 |
|
2012 |
Santos D, St. Aubin J, Fallone B, Steciw S (2012) Magnetic shielding investigation for a 6 MV in010line linac within the parallel configuration of a linac010MR system. Medical physics 39 (2):788-797 |
|
2014 |
Constantin DE, Holloway L, Keall PJ, Fahrig R (2014) A novel electron gun for inline MRI010linac configurations. Medical physics 41 (2):022301 |
|
2016 |
Whelan B, Holloway L, Constantin D, Oborn B, Bazalova010Carter M, Fahrig R, Keall P (2016) Performance of a clinical gridded electron gun in magnetic fields: Implications for MRI010linac therapy. Medical Physics 43 (11):5903-5914. doi:doi:10.1118/1.4963216 |
|